Chapter 18  The TU Filtering Algorithm to Solve Problem 1
The TU Algorithm, although an approximate string matching algorithm, is related to the exact string matching algorithm.  In fact, if we set 
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, the TU Algorithm reduces to the Horspool Algorithm, an exact string matching algorithm introduced in Chapter 5.  Just like the Horspool Algorithm, it opens a window whose size is the same as that of the pattern and scans from the right to the left.  There is a mechanism to decide when a shift is needed and the shift is also quite similar to that of the Horspool Algorithm .We will see later that this algorithm uses many ideas from exact string matching algorithms.  We first want to say that, as in most filtering algorithms, windows are opened 
Section 18.1  The Filtering Mechanism of the TU Algorithm
Let us go back to examine some exact string algorithms.  Most of them start with some kind of pairwise character comparison.  Consider a window 
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of a text string 
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, we know there is no exact matching between 
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 and 
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 and a shifting is now needed.  In approximate string matching, we cannot make such a conclusion.

Let us consider the following data:
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	1
	2
	3
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	5
	6
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	a
	c
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	g
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If we compare 
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To facilitate our discussion, let us define the following term:

Definition 18.1-1  The 
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Example 18.1-1  
For the following data, 
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	i
	
	1
	2
	3
	4
	5
	6
	7
	

	T
	=
	a
	c
	t
	t
	g
	t
	a
	

	P
	=
	
	a
	c
	t
	t
	g
	t
	

	j
	
	
	1
	2
	3
	4
	5
	6
	



Consider the case where 
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	T
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	a
	c
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	a
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In this case, we have 
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Example 18.1-2

Consider the following data:

	i
	
	
	1
	2
	3
	4
	5
	6
	

	T
	=
	
	a
	c
	t
	t
	g
	t
	

	P
	=
	a
	c
	t
	t
	g
	t
	c
	

	j
	
	1
	2
	3
	4
	5
	6
	7
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Note that each 
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Example 18.1-3

Consider the following data:

	i
	
	
	1
	2
	3
	4
	5
	6
	

	T
	=
	
	a
	c
	t
	t
	g
	t
	

	P
	=
	a
	a
	t
	g
	c
	g
	c
	

	j
	
	1
	2
	3
	4
	5
	6
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In this case, we can see that 
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Let us assume that we have two strings with the same length and the error bound 
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 is already specified.  Then we examine each 
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From the above discussion, we can have the following rule.

Rule A5  Given an error bound 
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Example 18.1-4


Consider the following data:

	
	
	1
	2
	3
	4
	5
	6
	7
	8

	T
	=
	a
	g
	t
	g
	c
	a
	t
	g

	P
	=
	a
	g
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	g
	a
	g
	t
	g
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We can see that 
[image: image76.wmf]t

t

=

3

 is not in 
[image: image77.wmf]gcg

C

=

)

3

,

1

(

.  Neither is 
[image: image78.wmf]c

t

=

5

 in 
[image: image79.wmf]gag

C

=

)

5

,

1

(

.  In fact, it can proved that 
[image: image80.wmf]1

3

)

,

(

=

>

=

k

P

T

ED

.
Example 18.1-5

	
	
	1
	2
	3
	4
	5
	6
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	T
	=
	a
	t
	t
	g
	c
	c
	t
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	P
	=
	a
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	t
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In this case, we can see that every 
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Rule A5 can obviously be used as a filtering scheme.  In the following, we shall show a very interesting rule of the TU Algorithm:  the shifting rule of the algorithm.

Section 18.2  The Shifting of the TU Algorithm

The TU Algorithm opens a window of length 
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 and scans from the right.  As soon as it finds 
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’s, we stop and we may perform a shifting of the pattern.  The shifting is based upon the following rule.
Rule A6  Let there be two strings 
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In the TU Algorithm, the shifting is based upon Rule A6.  Consider the suffix 
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Example 18.2-1

Consider the following case :
	
	
	1
	2
	3
	4
	5
	6
	7
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	W
	=
	a
	g
	t
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	P
	=
	a
	g
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	t
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Suppose 
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To facilitate our shifting mechanism, in the following, we shall give the 
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 table of the TU Algorithm.

Definition 18.2-1  The 
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 Table for the TU Algorithm

Given an alphabet set 
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Example 18.2-2
Let 
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	6
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Shifting Rule for the TU Algorithm
Consider window 
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Example 18.2-3

Consider the following data:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	T
	=
	c
	c
	t
	c
	g
	c
	a
	a
	g
	a
	g
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	g
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In this case, 
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. We would shift one step and the result is as follows:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	T
	=
	c
	c
	t
	c
	g
	c
	a
	a
	g
	a
	g
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	P
	=
	
	g
	c
	a
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	a
	g
	
	
	



Now, 
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	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	T
	=
	c
	c
	t
	t
	g
	c
	a
	a
	g
	a
	g
	c

	P
	=
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	c
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It can be proved there exists a solution in this window which is 
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It can be easily seen that if we shift less than 
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 is defined by the shifting rule, Rule A6 will not be satisfied because 
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In the following example, we shall show that we cannot shift more than 
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 steps because it may miss a solution.
Example 18.2-4


Consider the following data:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	T
	=
	c
	t
	t
	a
	c
	g
	t
	g
	t
	a
	t

	P
	=
	a
	c
	c
	g
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It is easy to see that for the first window, we need to shift 3 steps.

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	T
	=
	c
	t
	t
	a
	c
	g
	t
	g
	t
	a
	t

	P
	=
	
	
	
	a
	c
	c
	g
	
	
	
	



At this point, we can find a solution, namely 
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Suppose we shifted, say 4 steps, we will miss this solution.

Section 18.3  The Complete TU Algorithm

We now present the complete TU Algorithm
Algorithm 18.1  The TU Algorithm

Input:  
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Output:  All occurrences of 
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.
//Computation of 
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For 
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For 
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End of for

For 
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        End of if

        If 
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           Exit inner loop of for

        End of if

    End of for 
End of for
//Searching phase of the TU algorithm
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End of if
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End of While
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Open a checking window 
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Use any dynamic programming algorithm whether is substring whose edit distance with 
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End of While

We are given a complete example for the TU algorithm in the following.  
Example 18.2-5


Consider the following data:
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Step 1:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	T
	=
	g
	c
	a
	t
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t
	a

	P
	=
	g
	c
	a
	g
	a
	g
	a
	g
	
	
	
	
	
	
	

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	
	
	
	
	



[image: image200.wmf]a

t

=

8

 appears in 
[image: image201.wmf]ag

C

=

)

8

,

1

(

,

[image: image202.wmf]c

t

=

7

 does not appear in 
[image: image203.wmf]gag

C

=

)

7

,

1

(

,

[image: image204.wmf]g

t

=

6

 appears in 
[image: image205.wmf]aga

C

=

)

6

,

1

(

,

[image: image206.wmf]c

t

=

5

 does not appear in 
[image: image207.wmf]gag

C

=

)

5

,

1

(

.
Shifting is needed now.  In this case, 
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Step 2:
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Shifting is needed now.  In this case, 
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We open a checking window 
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 and use the U Algorithm which was introduced in Chapter 12 to check whether there is substring whose edit distance with 
[image: image260.wmf]P

 and output the result.  As shown in the following table, the solutions are Locations 8. 9 amd 10.
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    Step 4:
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Shifting is needed now.  In this case, 
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