Chapter 18 The TU Filtering Algorithm to Solve Problem 1
The TU Algorithm, although an approximate string matching algorithm, is related to the exact string matching algorithm. In fact, if we set
[image: image1.wmf]0

=

k

, the TU Algorithm reduces to the Horspool Algorithm, an exact string matching algorithm introduced in Chapter 5. Just like the Horspool Algorithm, it opens a window whose size is the same as that of the pattern and scans from the right to the left. There is a mechanism to decide when a shift is needed and the shift is also quite similar to that of the Horspool Algorithm .We will see later that this algorithm uses many ideas from exact string matching algorithms. We first want to say that, as in most filtering algorithms, windows are opened
Section 18.1 The Filtering Mechanism of the TU Algorithm
Let us go back to examine some exact string algorithms. Most of them start with some kind of pairwise character comparison. Consider a window
[image: image2.wmf])

,

1

(

m

W

of a text string
[image: image3.wmf]T

 and a pattern
[image: image4.wmf])

,

1

(

m

P

. Suppose
[image: image5.wmf]m

m

p

w

¹

, we know there is no exact matching between
[image: image6.wmf]P

 and
[image: image7.wmf]W

 and a shifting is now needed. In approximate string matching, we cannot make such a conclusion.

Let us consider the following data:

	i
	
	1
	2
	3
	4
	5
	6
	7
	

	T
	=
	a
	c
	t
	t
	g
	t
	a
	

	P
	=
	
	a
	c
	t
	t
	g
	t
	

	j
	
	
	1
	2
	3
	4
	5
	6
	

[image: image8.wmf]1

=

k

If we compare
[image: image9.wmf]7

t

 and
[image: image10.wmf]6

p

, we will find out that
[image: image11.wmf]6

7

p

t

¹

. We may correctly conclude that we need at least 1 operation to make
[image: image12.wmf]6

7

p

t

¹

. We then compare
[image: image13.wmf]6

t

 with
[image: image14.wmf]5

p

 and we will find out that
[image: image15.wmf]5

6

p

t

¹

.. Can we then claim that
[image: image16.wmf]2

)

,

(

³

P

T

ED

? No, we cannot, because by inserting an
[image: image17.wmf]a

 after
[image: image18.wmf]6

p

, we will make
[image: image19.wmf]P

 identical to
[image: image20.wmf]T

. In fact,
[image: image21.wmf]1

)

,

(

=

P

T

ED

.

To facilitate our discussion, let us define the following term:

Definition 18.1-1 The
[image: image22.wmf]-

k

environment of
[image: image23.wmf]j

p

Given the pattern
[image: image24.wmf])

,

1

(

m

P

, the
[image: image25.wmf]-

k

environment of
[image: image26.wmf]j

p

, denoted as
[image: image27.wmf])

,

(

j

k

C

, is
[image: image28.wmf]k

j

j

j

k

j

k

j

p

p

p

p

p

k

j

k

j

P

+

+

+

-

-

=

+

-

L

L

1

1

)

,

(

.
Example 18.1-1
For the following data,
[image: image29.wmf]1

=

k

, we have
[image: image30.wmf]gt

P

C

=

=

)

6

,

5

(

)

6

,

1

(

 and
[image: image31.wmf]tgt

P

C

=

=

)

6

,

4

(

)

5

,

1

(

.

	i
	
	1
	2
	3
	4
	5
	6
	7
	

	T
	=
	a
	c
	t
	t
	g
	t
	a
	

	P
	=
	
	a
	c
	t
	t
	g
	t
	

	j
	
	
	1
	2
	3
	4
	5
	6
	

Consider the case where
[image: image32.wmf]2

=

k

.

	i
	
	1
	2
	3
	4
	5
	6
	7
	

	T
	=
	a
	c
	t
	t
	g
	t
	a
	

	P
	=
	
	a
	c
	t
	t
	g
	t
	

	j
	
	
	1
	2
	3
	4
	5
	6
	

[image: image33.wmf]2

=

k

In this case, we have
[image: image34.wmf]tgt

P

C

=

=

)

6

,

4

(

)

6

,

2

(

[image: image35.wmf]ttgt

P

C

=

=

)

6

,

3

(

)

5

,

2

(

.
Example 18.1-2

Consider the following data:

	i
	
	
	1
	2
	3
	4
	5
	6
	

	T
	=
	
	a
	c
	t
	t
	g
	t
	

	P
	=
	a
	c
	t
	t
	g
	t
	c
	

	j
	
	1
	2
	3
	4
	5
	6
	7
	

[image: image36.wmf]1

=

k

Note that each
[image: image37.wmf]i

t

 is aligned with a
[image: image38.wmf]j

p

. For instance,
[image: image39.wmf]2

t

 is aligned with
[image: image40.wmf]3

p

. In this case, every
[image: image41.wmf]i

t

 is in its corresponding
[image: image42.wmf])

,

1

(

j

C

 under the condition that
[image: image43.wmf]1

=

k

. For instance,
[image: image44.wmf]t

t

=

6

 is in
[image: image45.wmf]tc

C

=

)

7

,

1

(

 and
[image: image46.wmf]c

t

=

2

 is in
[image: image47.wmf]ctt

C

=

)

3

,

1

(

. We can also prove that
[image: image48.wmf]k

P

T

ED

=

=

1

)

,

(

.
Example 18.1-3

Consider the following data:

	i
	
	
	1
	2
	3
	4
	5
	6
	

	T
	=
	
	a
	c
	t
	t
	g
	t
	

	P
	=
	a
	a
	t
	g
	c
	g
	c
	

	j
	
	1
	2
	3
	4
	5
	6
	7
	

[image: image49.wmf]1

=

k

In this case, we can see that
[image: image50.wmf]c

t

=

2

 is not in its corresponding
[image: image51.wmf]atg

C

=

)

3

,

1

(

 and
[image: image52.wmf]t

t

=

4

 is not in
[image: image53.wmf]gcg

C

=

)

5

,

1

(

. We can also prove that
[image: image54.wmf]1

)

,

(

=

>

k

T

P

ED

Let us assume that we have two strings with the same length and the error bound
[image: image55.wmf]k

 is already specified. Then we examine each
[image: image56.wmf]i

t

 to see whether
[image: image57.wmf]i

t

 is in
[image: image58.wmf])

,

(

i

k

C

. If one
[image: image59.wmf]i

t

 is not in
[image: image60.wmf])

,

(

i

k

C

, we cannot perform any insertion or deletion to change
[image: image61.wmf]i

p

 to
[image: image62.wmf]i

t

. But, we can perform a substitution. If
[image: image63.wmf])

1

(

+

k

[image: image64.wmf]i

t

’s are not in
[image: image65.wmf])

,

(

i

k

C

’s, we have to perform
[image: image66.wmf])

1

(

+

k

 substitutions. Thus we have
[image: image67.wmf]k

P

T

ED

>

)

,

(

.

From the above discussion, we can have the following rule.

Rule A5 Given an error bound
[image: image68.wmf]k

 and two strings
[image: image69.wmf])

,

1

(

m

T

 and
[image: image70.wmf])

,

1

(

m

P

, if there are more than
[image: image71.wmf]k

[image: image72.wmf]i

t

’s not in
[image: image73.wmf])

,

(

i

k

C

’s,
[image: image74.wmf]k

P

T

ED

>

)

,

(

.

Example 18.1-4

Consider the following data:

	
	
	1
	2
	3
	4
	5
	6
	7
	8

	T
	=
	a
	g
	t
	g
	c
	a
	t
	g

	P
	=
	a
	g
	c
	g
	a
	g
	t
	g

[image: image75.wmf]1

=

k

We can see that
[image: image76.wmf]t

t

=

3

 is not in
[image: image77.wmf]gcg

C

=

)

3

,

1

(

. Neither is
[image: image78.wmf]c

t

=

5

 in
[image: image79.wmf]gag

C

=

)

5

,

1

(

. In fact, it can proved that
[image: image80.wmf]1

3

)

,

(

=

>

=

k

P

T

ED

.
Example 18.1-5

	
	
	1
	2
	3
	4
	5
	6
	7
	8

	T
	=
	a
	t
	t
	g
	c
	c
	t
	g

	P
	=
	a
	t
	c
	g
	a
	c
	t
	g

[image: image81.wmf]1

=

k

In this case, we can see that every
[image: image82.wmf]i

t

 is in
[image: image83.wmf])

,

(

i

k

C

. But,
[image: image84.wmf]1

2

)

,

(

=

>

=

k

P

T

ED

.

Rule A5 can obviously be used as a filtering scheme. In the following, we shall show a very interesting rule of the TU Algorithm: the shifting rule of the algorithm.

Section 18.2 The Shifting of the TU Algorithm

The TU Algorithm opens a window of length
[image: image85.wmf]m

 and scans from the right. As soon as it finds
[image: image86.wmf]i

t

k

)

1

(

+

’s which are not in
[image: image87.wmf])

,

(

i

k

C

’s, we stop and we may perform a shifting of the pattern. The shifting is based upon the following rule.
Rule A6 Let there be two strings
[image: image88.wmf])

,

1

(

m

A

 and
[image: image89.wmf])

,

1

(

m

B

. Consider any substring
[image: image90.wmf])

1

,

(

-

+

k

i

i

A

 and
[image: image91.wmf])

1

,

(

-

+

k

i

i

B

. If
[image: image92.wmf]k

B

A

ED

£

)

,

(

, there exists at least one
[image: image93.wmf]j

j

b

a

=

 for
[image: image94.wmf]1

-

+

£

£

k

i

j

i

.

In the TU Algorithm, the shifting is based upon Rule A6. Consider the suffix
[image: image95.wmf]m

k

m

k

m

w

w

w

m

k

m

W

L

1

)

,

(

+

-

-

=

-

of the window
[image: image96.wmf]W

, if a shifting is needed, this substring of the new window will be aligned with a corresponding substring
[image: image97.wmf])

,

(

k

i

i

P

+

 in
[image: image98.wmf]P

. According to Rule A6, there must exist at least one pair of characters in
[image: image99.wmf]m

k

m

k

m

w

w

w

m

k

m

W

L

1

)

,

(

+

-

-

=

-

 and
[image: image100.wmf])

,

(

k

i

i

P

+

 which exactly match with each other..
Example 18.2-1

Consider the following case :
	
	
	1
	2
	3
	4
	5
	6
	7
	8

	W
	=
	a
	g
	t
	c
	c
	c
	t
	a

	P
	=
	a
	g
	t
	c
	g
	c
	t
	c

Suppose
[image: image101.wmf]1

=

k

 and we have to shift. After the shift,
[image: image102.wmf]ta

W

m

k

m

W

=

=

-

)

8

,

7

(

)

,

(

 will be aligned with
[image: image103.wmf])

1

,

(

)

,

(

+

=

+

i

i

P

k

i

i

P

 for some
[image: image104.wmf]i

. Thus we have to make sure that after the shift, among the two characters of
[image: image105.wmf])

8

,

7

(

W

, namely
[image: image106.wmf]t

 and
[image: image107.wmf]a

, at least one character of them will be exactly matched with its corresponding character in
[image: image108.wmf])

1

,

(

+

i

i

P

. If we want to match
[image: image109.wmf]t

, 4 steps are needed. If we want to match
[image: image110.wmf]a

, 7 steps are needed. We choose the minimum of them, which is 4.

To facilitate our shifting mechanism, in the following, we shall give the
[image: image111.wmf]j

D

 table of the TU Algorithm.

Definition 18.2-1 The
[image: image112.wmf]j

D

 Table for the TU Algorithm

Given an alphabet set
[image: image113.wmf])

,

,

,

(

2

1

s

x

x

x

L

=

S

 and pattern
[image: image114.wmf]P

 with length
[image: image115.wmf]m

, we create a table, denoted as
[image: image116.wmf]j

D

 table of
[image: image117.wmf]P

, containing
[image: image118.wmf]s

 entries where
[image: image119.wmf]s

 is the alphabet size. Each entry stores the location of the rightmost
[image: image120.wmf]s

£

£

i

x

i

1

,

, in
[image: image121.wmf])

,

1

(

j

m

P

-

 counted from location
[image: image122.wmf]j

m

-

, if it exists. If
[image: image123.wmf]i

x

 does not exist in
[image: image124.wmf])

,

1

(

j

m

P

-

, store
[image: image125.wmf]m

 in the entry.

Example 18.2-2
Let
[image: image126.wmf]gcagagag

P

=

and
[image: image127.wmf](

)

t

g

c

a

,

,

,

=

S

. Then the
[image: image128.wmf]j

D

 tables, for
[image: image129.wmf]1

=

j

 and
[image: image130.wmf]2

=

j

, are as follows:

	
	
	1
	2
	3
	4
	5
	6
	7
	8

	P
	=
	g
	c
	a
	g
	a
	g
	a
	g

The
[image: image131.wmf]1

D

 Table

	a
	c
	g
	t

	1
	6
	2
	8

The
[image: image132.wmf]2

D

 Table

	a
	c
	g
	t

	2
	5
	1
	8

Shifting Rule for the TU Algorithm
Consider window
[image: image133.wmf])

,

1

(

m

W

,
[image: image134.wmf])

,

1

(

m

P

 and error bound
[image: image135.wmf]k

. Let
[image: image136.wmf])

(

1

+

-

=

j

m

j

j

t

D

d

, for
[image: image137.wmf]1

=

j

 to
[image: image138.wmf]1

+

=

k

j

 Then the number of steps needed to shift is
[image: image139.wmf](

)

1

2

1

,

,

,

min

+

=

k

d

d

d

d

L

.
Example 18.2-3

Consider the following data:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	T
	=
	c
	c
	t
	c
	g
	c
	a
	a
	g
	a
	g
	c

	P
	=
	g
	c
	a
	g
	a
	g
	a
	g
	
	
	
	

[image: image140.wmf]1

=

k

The
[image: image141.wmf]1

D

 Table

	a
	c
	g
	t

	1
	6
	2
	8

The
[image: image142.wmf]2

D

 Table

	a
	c
	g
	t

	2
	5
	1
	8

In this case,
[image: image143.wmf]1

)

(

)

(

1

1

1

=

=

=

a

D

w

D

d

m

 and
[image: image144.wmf]2

)

(

)

(

2

1

2

2

=

=

=

-

a

D

w

D

d

m

. Thus the number of shifts is
[image: image145.wmf]{

}

{

}

1

2

,

1

min

,

min

2

1

=

=

=

d

d

d

. We would shift one step and the result is as follows:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	T
	=
	c
	c
	t
	c
	g
	c
	a
	a
	g
	a
	g
	c

	P
	=
	
	g
	c
	a
	g
	a
	g
	a
	g
	
	
	

Now,
[image: image146.wmf]2

)

(

)

(

1

1

1

=

=

=

g

D

w

D

d

m

 and
[image: image147.wmf]2

)

(

)

(

2

1

2

2

=

=

=

-

a

D

w

D

d

m

. Thus we shift 2 steps.

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12

	T
	=
	c
	c
	t
	t
	g
	c
	a
	a
	g
	a
	g
	c

	P
	=
	
	
	
	g
	c
	a
	g
	a
	g
	a
	g
	

It can be proved there exists a solution in this window which is
[image: image148.wmf]gcaagag

T

=

)

11

,

5

(

.

It can be easily seen that if we shift less than
[image: image149.wmf]d

 steps where
[image: image150.wmf]d

 is defined by the shifting rule, Rule A6 will not be satisfied because
[image: image151.wmf](

)

1

2

1

,

,

,

min

+

=

k

d

d

d

d

L

 and
[image: image152.wmf])

(

1

+

-

=

j

m

j

j

t

D

d

.

In the following example, we shall show that we cannot shift more than
[image: image153.wmf]d

 steps because it may miss a solution.
Example 18.2-4

Consider the following data:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	T
	=
	c
	t
	t
	a
	c
	g
	t
	g
	t
	a
	t

	P
	=
	a
	c
	c
	g
	
	
	
	
	
	
	

[image: image154.wmf]1

=

k

It is easy to see that for the first window, we need to shift 3 steps.

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	T
	=
	c
	t
	t
	a
	c
	g
	t
	g
	t
	a
	t

	P
	=
	
	
	
	a
	c
	c
	g
	
	
	
	

At this point, we can find a solution, namely
[image: image155.wmf]acg

T

=

)

7

,

4

(

.

Suppose we shifted, say 4 steps, we will miss this solution.

Section 18.3 The Complete TU Algorithm

We now present the complete TU Algorithm
Algorithm 18.1 The TU Algorithm

Input:
[image: image156.wmf])

,

1

(

),

,

1

(

m

P

n

T

 and error bound
[image: image157.wmf]k

.

Output: All occurrences of
[image: image158.wmf]P

 in
[image: image159.wmf]T

 with error bound
[image: image160.wmf]k

.
//Computation of
[image: image161.wmf]j

D

For
[image: image162.wmf]a

 in
[image: image163.wmf]S

 do
For
[image: image164.wmf]1

=

j

 to
[image: image165.wmf]1

+

=

k

j

 do

[image: image166.wmf]m

a

D

j

=

)

(

End of for

End of for

For
[image: image167.wmf]1

=

j

 to
[image: image168.wmf]1

+

=

k

j

 do

[image: image169.wmf]0

=

r

For
[image: image170.wmf]1

+

-

=

j

m

i

 downto
[image: image171.wmf]1

=

i

 do

 If
[image: image172.wmf]m

p

D

i

j

=

)

(

 then

[image: image173.wmf]i

p

D

i

j

=

)

(

[image: image174.wmf]1

+

=

r

r

 End of if

 If
[image: image175.wmf]s

=

r

 then
 Exit inner loop of for

 End of if

 End of for
End of for
//Searching phase of the TU algorithm

[image: image176.wmf]m

i

=

 //
[image: image177.wmf])

,

1

(

i

m

i

T

+

-

 is the window for filtering

While
[image: image178.wmf]k

n

i

+

£

 do

[image: image179.wmf],

0

,

=

=

bad

m

j

[image: image180.wmf]i

r

=

,

While
[image: image181.wmf]k

j

>

 and
[image: image182.wmf]k

bad

£

 and
[image: image183.wmf]h

r

³

 do

If
[image: image184.wmf]r

t

 does not appear in
[image: image185.wmf])

,

(

r

k

C

 then

[image: image186.wmf]1

+

=

bad

bad

End of if

[image: image187.wmf]1

-

=

j

j

[image: image188.wmf]1

-

=

r

r

End of While

If
[image: image189.wmf]k

bad

£

 then

Open a checking window
[image: image190.wmf])

,

(

k

i

k

m

i

T

+

-

-

Use any dynamic programming algorithm whether is substring whose edit distance with
[image: image191.wmf]P

 and output the result.
End of if

For
[image: image192.wmf]1

=

j

 to
[image: image193.wmf]1

+

=

k

j

 do

[image: image194.wmf])

(

1

+

-

=

j

m

j

j

t

D

d

End of for

[image: image195.wmf]{

}

1

2

1

,

,

min

+

=

k

d

d

d

d

L

[image: image196.wmf])

,

1

max(

d

k

i

i

+

+

=

End of While

We are given a complete example for the TU algorithm in the following.
Example 18.2-5

Consider the following data:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	T
	=
	g
	c
	a
	t
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t
	a

	P
	=
	g
	c
	a
	g
	a
	g
	a
	g
	
	
	
	
	
	
	

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	
	
	
	
	

[image: image197.wmf]1

=

k

.

Initially, we have

The
[image: image198.wmf]1

D

 Table

	a
	c
	g
	t

	1
	6
	2
	8

The
[image: image199.wmf]2

D

 Table

	a
	c
	g
	t

	2
	5
	1
	8

Step 1:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	T
	=
	g
	c
	a
	t
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t
	a

	P
	=
	g
	c
	a
	g
	a
	g
	a
	g
	
	
	
	
	
	
	

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	
	
	
	
	

[image: image200.wmf]a

t

=

8

 appears in
[image: image201.wmf]ag

C

=

)

8

,

1

(

,

[image: image202.wmf]c

t

=

7

 does not appear in
[image: image203.wmf]gag

C

=

)

7

,

1

(

,

[image: image204.wmf]g

t

=

6

 appears in
[image: image205.wmf]aga

C

=

)

6

,

1

(

,

[image: image206.wmf]c

t

=

5

 does not appear in
[image: image207.wmf]gag

C

=

)

5

,

1

(

.
Shifting is needed now. In this case,
[image: image208.wmf]1

)

(

)

(

1

1

1

=

=

=

a

D

w

D

d

m

 and
[image: image209.wmf]5

)

(

)

(

2

1

2

2

=

=

=

-

c

D

w

D

d

m

. Thus the number of shifts is
[image: image210.wmf]{

}

{

}

1

5

,

1

min

,

min

2

1

=

=

=

d

d

d

. Thus we shift 1 steps.
Step 2:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	T
	=
	g
	c
	a
	t
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t
	a

	P
	=
	
	g
	c
	a
	g
	a
	g
	a
	g
	
	
	
	
	
	

	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	
	
	
	

[image: image211.wmf]g

t

=

9

 appears in
[image: image212.wmf]ag

C

=

)

8

,

1

(

,

[image: image213.wmf]a

t

=

8

 appears in
[image: image214.wmf]gag

C

=

)

7

,

1

(

,

[image: image215.wmf]c

t

=

7

 does not appear in
[image: image216.wmf]aga

C

=

)

6

,

1

(

,

[image: image217.wmf]g

t

=

6

 appears in
[image: image218.wmf]gag

C

=

)

5

,

1

(

,

[image: image219.wmf]c

t

=

5

 does not appear in
[image: image220.wmf]aga

C

=

)

4

,

1

(

.
Shifting is needed now. In this case,
[image: image221.wmf]2

)

(

)

(

1

1

1

=

=

=

g

D

w

D

d

m

 and
[image: image222.wmf]2

)

(

)

(

2

1

2

2

=

=

=

-

a

D

w

D

d

m

. Thus the number of shifts is
[image: image223.wmf]{

}

{

}

2

2

,

2

min

,

min

2

1

=

=

=

d

d

d

. Thus we shift 2 steps.
Step 2:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	T
	=
	g
	c
	a
	t
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t
	a

	P
	=
	
	
	
	g
	c
	a
	g
	a
	g
	a
	g
	
	
	
	

	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	
	
	

[image: image224.wmf]g

t

=

11

 appears in
[image: image225.wmf]ag

C

=

)

8

,

1

(

,

[image: image226.wmf]a

t

=

10

 appears in
[image: image227.wmf]gag

C

=

)

7

,

1

(

,

[image: image228.wmf]g

t

=

9

 appears in
[image: image229.wmf]aga

C

=

)

6

,

1

(

,

[image: image230.wmf]a

t

=

8

 appears in
[image: image231.wmf]gag

C

=

)

5

,

1

(

,

[image: image232.wmf]c

t

=

7

 does not appear in
[image: image233.wmf]aga

C

=

)

4

,

1

(

,

[image: image234.wmf]g

t

=

6

 appears in
[image: image235.wmf]cag

C

=

)

3

,

1

(

,

[image: image236.wmf]c

t

=

5

 appears in
[image: image237.wmf]gca

C

=

)

2

,

1

(

,

[image: image238.wmf]t

t

=

4

 does not appear in
[image: image239.wmf]gc

C

=

)

1

,

1

(

.
Shifting is needed now. In this case,
[image: image240.wmf]2

)

(

)

(

1

1

1

=

=

=

g

D

w

D

d

m

 and
[image: image241.wmf]2

)

(

)

(

2

1

2

2

=

=

=

-

a

D

w

D

d

m

. Thus the number of shifts is
[image: image242.wmf]{

}

{

}

2

2

,

2

min

,

min

2

1

=

=

=

d

d

d

. Thus we shift 2 steps.

Step 3:

	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	T
	=
	g
	c
	a
	t
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t
	a

	P
	=
	
	
	
	
	
	g
	c
	a
	g
	a
	g
	a
	g
	
	

	
	
	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	
	

[image: image243.wmf]g

t

=

13

 appears in
[image: image244.wmf]ag

C

=

)

8

,

1

(

,

[image: image245.wmf]a

t

=

12

 appears in
[image: image246.wmf]gag

C

=

)

7

,

1

(

[image: image247.wmf]g

t

=

11

 appears in
[image: image248.wmf]aga

C

=

)

6

,

1

(

,

[image: image249.wmf]a

t

=

10

 appears in
[image: image250.wmf]gag

C

=

)

5

,

1

(

,

[image: image251.wmf]g

t

=

9

 appears in
[image: image252.wmf]aga

C

=

)

4

,

1

(

,

[image: image253.wmf]a

t

=

8

 appears in
[image: image254.wmf]cag

C

=

)

3

,

1

(

,

[image: image255.wmf]c

t

=

7

 appears in
[image: image256.wmf]gca

C

=

)

2

,

1

(

,

[image: image257.wmf]g

t

=

6

 appears in
[image: image258.wmf]gc

C

=

)

1

,

1

(

.
We open a checking window
[image: image259.wmf])

14

,

5

(

T

 and use the U Algorithm which was introduced in Chapter 12 to check whether there is substring whose edit distance with
[image: image260.wmf]P

 and output the result. As shown in the following table, the solutions are Locations 8. 9 amd 10.
	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	
	
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t

	
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	g
	1
	1
	0
	1
	1
	0
	1
	0
	1
	0
	1

	c
	2
	1
	1
	0
	1
	1
	1
	1
	1
	1
	1

	a
	3
	2
	2
	1
	0
	1
	1
	2
	1
	2
	2

	g
	4
	
	
	2
	1
	0
	1
	1
	2
	1
	2

	a
	5
	
	
	
	2
	1
	0
	1
	1
	2
	2

	g
	6
	
	
	
	
	2
	1
	0
	1
	1
	2

	a
	7
	
	
	
	
	
	2
	1
	0
	1
	2

	g
	8
	
	
	
	
	
	
	2
	1
	0
	1

In this case,
[image: image261.wmf]2

)

(

)

(

1

1

1

=

=

=

g

D

w

D

d

m

 and
[image: image262.wmf]2

)

(

)

(

2

1

2

2

=

=

=

-

a

D

w

D

d

m

. Thus the number of shifts is
[image: image263.wmf]{

}

{

}

2

2

,

2

min

,

min

2

1

=

=

=

d

d

d

. Thus we shift 2 steps.
 Step 4:
	
	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	T
	=
	g
	c
	a
	t
	c
	g
	c
	a
	g
	a
	g
	a
	g
	t
	a

	P
	=
	
	
	
	
	
	
	
	g
	c
	a
	g
	a
	g
	a
	g

	
	
	
	
	
	
	
	
	
	1
	2
	3
	4
	5
	6
	7
	8

[image: image264.wmf]a

t

=

15

 appears in
[image: image265.wmf]ag

C

=

)

8

,

1

(

,

[image: image266.wmf]t

t

=

14

 does not appear in
[image: image267.wmf]gag

C

=

)

7

,

1

(

[image: image268.wmf]g

t

=

13

 appears in
[image: image269.wmf]aga

C

=

)

6

,

1

(

,

[image: image270.wmf]a

t

=

12

 appears in
[image: image271.wmf]gag

C

=

)

5

,

1

(

,

[image: image272.wmf]g

t

=

11

 appears in
[image: image273.wmf]aga

C

=

)

4

,

1

(

,

[image: image274.wmf]a

t

=

10

 appears in
[image: image275.wmf]cag

C

=

)

3

,

1

(

,

[image: image276.wmf]g

t

=

9

 appears in
[image: image277.wmf]gca

C

=

)

2

,

1

(

,

[image: image278.wmf]a

t

=

8

 does not appear in
[image: image279.wmf]gc

C

=

)

1

,

1

(

.
Shifting is needed now. In this case,
[image: image280.wmf]1

)

(

)

(

1

1

1

=

=

=

a

D

w

D

d

m

 and
[image: image281.wmf]8

)

(

)

(

2

1

2

2

=

=

=

-

t

D

w

D

d

m

. Thus the number of shifts is
[image: image282.wmf]{

}

{

}

1

8

,

1

min

,

min

2

1

=

=

=

d

d

d

. Thus we shift 1 steps.

Reference

[TU93] Tarhio, J. and Ukkonen, E., Approximate Boyer-Moore String Matching, SIAM Journal on Computing, Vol. 22, No. 2, pp.243-260, 1893/

[U85]: Ukkonen, E., Finding Approximate Patterns in Strings, Journal of Algorithms, Vol. 6, pp.132-137, 1985.

2013.09.05 Kuei-hao Chen
PAGE
18-10

_1433007147.unknown

_1433267631.unknown

_1439749025.unknown

_1439810806.unknown

_1439818501.unknown

_1439818675.unknown

_1439818942.unknown

_1439822031.unknown

_1439822202.unknown

_1439913388.unknown

_1439822200.unknown

_1439822201.unknown

_1439822055.unknown

_1439820656.unknown

_1439820660.unknown

_1439819008.unknown

_1439820369.unknown

_1439820380.unknown

_1439819146.unknown

_1439819189.unknown

_1439819234.unknown

_1439819257.unknown

_1439819207.unknown

_1439819170.unknown

_1439818948.unknown

_1439819006.unknown

_1439819007.unknown

_1439818953.unknown

_1439818764.unknown

_1439818897.unknown

_1439818684.unknown

_1439818531.unknown

_1439817874.unknown

_1439817987.unknown

_1439818003.unknown

_1439818329.unknown

_1439818413.unknown

_1439818051.unknown

_1439814668.unknown

_1439812210.unknown

_1439813377.unknown

_1439812203.unknown

_1439749950.unknown

_1439750183.unknown

_1439750289.unknown

_1439750336.unknown

_1439810761.unknown

_1439750461.unknown

_1439750324.unknown

_1439750224.unknown

_1439750108.unknown

_1439750151.unknown

_1439749966.unknown

_1439749490.unknown

_1439749732.unknown

_1439749845.unknown

_1439749525.unknown

_1439749403.unknown

_1439749454.unknown

_1439749049.unknown

_1433273025.unknown

_1433348432.unknown

_1433350879.unknown

_1438707603.unknown

_1438708217.unknown

_1438708603.unknown

_1438708735.unknown

_1439748996.unknown

_1438708784.unknown

_1438708708.unknown

_1438708425.unknown

_1438708579.unknown

_1438708376.unknown

_1438707676.unknown

_1438708200.unknown

_1438707650.unknown

_1433356063.unknown

_1438703311.unknown

_1438706921.unknown

_1438706957.unknown

_1438705868.unknown

_1438705990.unknown

_1438706156.unknown

_1438703725.unknown

_1433356342.unknown

_1433356826.unknown

_1433356849.unknown

_1433356977.unknown

_1433356384.unknown

_1433356165.unknown

_1433356279.unknown

_1433356304.unknown

_1433356211.unknown

_1433356125.unknown

_1433351802.unknown

_1433355624.unknown

_1433355574.unknown

_1433355605.unknown

_1433355526.unknown

_1433351639.unknown

_1433350839.unknown

_1433350866.unknown

_1433348683.unknown

_1433349200.unknown

_1433274307.unknown

_1433274339.unknown

_1433347304.unknown

_1433348388.unknown

_1433273896.unknown

_1433273928.unknown

_1433274041.unknown

_1433273874.unknown

_1433269144.unknown

_1433272895.unknown

_1433272925.unknown

_1433272933.unknown

_1433273024.unknown

_1433272912.unknown

_1433269335.unknown

_1433269505.unknown

_1433269313.unknown

_1433268218.unknown

_1433268357.unknown

_1433268467.unknown

_1433267667.unknown

_1433009790.unknown

_1433181375.unknown

_1433267382.unknown

_1433267448.unknown

_1433267586.unknown

_1433267408.unknown

_1433183194.unknown

_1433264007.unknown

_1433264542.unknown

_1433264797.unknown

_1433264189.unknown

_1433184621.unknown

_1433183090.unknown

_1433183140.unknown

_1433180841.unknown

_1433181101.unknown

_1433181209.unknown

_1433009819.unknown

_1433009803.unknown

_1433008896.unknown

_1433009711.unknown

_1433009746.unknown

_1433009784.unknown

_1433009731.unknown

_1433009682.unknown

_1433009693.unknown

_1433009637.unknown

_1433007536.unknown

_1433007971.unknown

_1433007985.unknown

_1433008013.unknown

_1433007609.unknown

_1433007758.unknown

_1432981625.unknown

_1433003686.unknown

_1433005814.unknown

_1433007055.unknown

_1433007117.unknown

_1433005950.unknown

_1433005156.unknown

_1433005709.unknown

_1433005004.unknown

_1432982940.unknown

_1432983099.unknown

_1432983130.unknown

_1432982951.unknown

_1432981738.unknown

_1432982232.unknown

_1432982254.unknown

_1432982204.unknown

_1432981737.unknown

_1432981736.unknown

_1432981220.unknown

_1432981407.unknown

_1432981499.unknown

_1432981543.unknown

_1432981440.unknown

_1432981277.unknown

_1432981345.unknown

_1432981247.unknown

_1432893465.unknown

_1432893543.unknown

_1432894247.unknown

_1432893525.unknown

_1413549629.unknown

_1432893416.unknown

_1432893434.unknown

_1413549670.unknown

_1432893384.unknown

_1413549652.unknown

_1294842259.unknown

_1294843171.unknown

_1294854416.unknown

_1294842237.unknown

